CARATHEODORY DIFFERENTIAL EQUATIONS ON CONES
نویسندگان
چکیده
منابع مشابه
Caratheodory operator of differential forms
* Correspondence: tzymath@gmail. com Department of Mathematics and System Science, National University of Defense Technology, Changsha, PR China Abstract This article is devoted to extensions of some existing results about the Caratheodory operator from the function sense to the differential form situation. Similarly as the function sense, we obtain the convergence of sequences of differential ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Invariance of Closed Convex Cones for Stochastic Partial Differential Equations
The goal of this paper is to clarify when a closed convex cone is invariant for a stochastic partial differential equation (SPDE) driven by a Wiener process and a Poisson random measure, and to provide conditions on the parameters of the SPDE, which are necessary and sufficient.
متن کاملOn impulsive fuzzy functional differential equations
In this paper, we prove the existence and uniqueness of solution to the impulsive fuzzy functional differential equations under generalized Hukuhara differentiability via the principle of contraction mappings. Some examples are provided to illustrate the result.
متن کاملOn the Subanalyticity of Carnot–caratheodory Distances
Let M be a C∞ Riemannian manifold, dimM = n. A distribution on M is a smooth linear subbundle of the tangent bundle TM . We denote by q the fiber of at q ∈M ; q ⊂ TqM . The number k = dim q is the rank of the distribution. We assume that 1 < k < n. The restriction of the Riemannian structure to is a sub-Riemannian structure. Lipschitz integral curves of the distribution are called admissible pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Pure and Apllied Mathematics
سال: 2015
ISSN: 1311-8080,1314-3395
DOI: 10.12732/ijpam.v98i1.11